1. Define the term: system.

2. Consider this reaction: \(2\text{CH}_3\text{OH}(l) + 3\text{O}_2(g) \rightarrow 4\text{H}_2\text{O}(l) + 2\text{CO}_2(g) \Delta H = -1452.8 \text{ kJ/mol}\)
 What is the value of \(\Delta H\) if the equation is multiplied throughout by 2?

3. What is the value of \(\Delta H\) if the reaction in question 2 is reversed so that the products become the reactants and vice versa?

4. Consider two metals A and B, each having a mass of 100 g and an initial temperature of 20°C. The specific heat of A is larger than that of B. Under the same heating conditions, which metal would take longer to reach a temperature of 21°C?

5. Calculate the heat of combustion for the following reaction from the standard enthalpies of formation using the standard enthalpies of formation found in appendix 3.
 \(2\text{H}_2(g) + \text{O}_2(g) \rightarrow 2\text{H}_2\text{O}(l)\)

6. From these data, \(\text{S(rhombic) + O}_2(g) \rightarrow \text{SO}_2(g) \quad \Delta H_{\text{rxn}} = -296.06 \text{ kJ/mol}\)
 \(\text{S(monoclinic) + O}_2(g) \rightarrow \text{SO}_2(g) \quad \Delta H_{\text{rxn}} = -296.36 \text{ kJ/mol}\)
 calculate the enthalpy change for the transformation
 \(\text{S(rhombic) \rightarrow S(monoclinic)}\)
 (Monoclinic and rhombic are different allotropic forms of elemental sulfur.)

7. From the following data, \(\text{C(graphite) + O}_2(g) \rightarrow \text{CO}_2(g) \quad \Delta H = -393.5 \text{ kJ/mol}\)
 \(\text{H}_2(g) + \frac{1}{2}\text{O}_2(g) \rightarrow \text{H}_2\text{O}(l) \quad \Delta H = -285.8 \text{ kJ/mol}\)
 \(2\text{C}_2\text{H}_6(g) + 7\text{O}_2(g) \rightarrow 4\text{CO}_2(g) + 6\text{H}_2\text{O}(l) \quad \Delta H = -3119.6 \text{ kJ/mol}\)
 calculate the enthalpy change for the reaction
 \(2\text{C(graphite) + 3H}_2(g) \rightarrow \text{C}_2\text{H}_6(g)\)

8. Note the following heats of combustion:

 \(\text{CH}_3\text{OH}(l) + \frac{3}{2}\text{O}_2(g) \rightarrow \text{CO}_2(g) + 2\text{H}_2\text{O}(l) \quad \Delta H = -726.4 \text{ kJ/mol}\)
 \(\text{C(graphite) + O}_2(g) \rightarrow \text{CO}_2(g) \quad \Delta H = -393.5 \text{ kJ/mol}\)
 \(\text{H}_2(g) + \frac{1}{2}\text{O}_2(g) \rightarrow \text{H}_2\text{O}(l) \quad \Delta H = -285.8 \text{ kJ/mol}\)

 Calculate the enthalpy of formation of methanol \((\text{CH}_3\text{OH})\) from its elements:
 \(\text{C(graphite) + 2H}_2(g) + \frac{1}{2}\text{O}_2(g) \rightarrow \text{CH}_3\text{OH}(l)\)
9. A 44.0-g sample of an unknown metal at 99.0°C was placed in a constant-pressure calorimeter containing 80.0 g of water at 24.0°C. The final temperature of the system was found to be 28.4°C. Calculate the specific heat of the metal. (The heat capacity of the calorimeter is 12.4 J/°C.)

10. A piece of stainless steel of mass 25.0 g at 88.0°C was placed in a calorimeter that contained 150.0 g of water at 20.0°C. If the temperature of the water rose to 21.4°C, what is the specific heat capacity of the stainless steel? The specific heat capacity of water is 4.184 J/ g (°C).

11. A reaction occurs in a calorimeter that contains 120.0 g of water at 25.00°C, and 3.60 kJ of heat is evolved. If the specific heat capacity of water is 4.184 J/ g (°C), what is the final temperature of the water?

12. Calcium oxide and water react in an exothermic reaction: \[\text{CaO(s)} + \text{H}_2\text{O(l)} \rightarrow \text{Ca(OH)}_2(\text{s}) \quad \Delta H_{\text{rxn}} = -64.8 \text{ kJ} \]
 How much heat would be liberated when 7.15 g CaO(s) is dropped into a beaker containing 152 g H₂O?

13. What is the heat of solution in KJ/ mol of LiOH given that Suzy took 10.00 g of LiOH and put it into 100.0 g of water in a bomb calorimeter. The specific heat of solution is 4.06 J/ g °C and the density of solution is 1.01 g/ mL and the temperature increases 2.32 °C.

14. Find the heat of neutralization in (KJ/ mol) when 300.0 mL of 0.200 M HNO₃ at 25.0 °C is mixed with 300.0 mL of 0.200 M of LiOH at 25.0 °C. The specific heat of solution is 4.06 J/ g °C and the density of solution is 1.01 g/ mL. The temperature of solution rises to 32.3 °C.

15. Anhydrous Ammonium Acetate can be used to make a cold pack what would be the heat of solution if 5.00 g of Ammonium Acetate placed in 100.0 g of water causes the temperature to drop 3.24 °C and the specific heat of solution and density of solution is the same as in problem 14.

Answers:
1. The part of the universe that is of interest to us. 2 –2905.6 kJ/ mol
3. 1452.8 kJ/ mol 4. metal A because of the definition of specific heat
5. –571.6 kJ/ mol 6. 0.30 kJ/ mol 7. –84.6 kJ/ mol
8. –238.7 kJ/mol 9. 0.492 J/g · °C 10. 0.53 J/ g (°C)
11. 32.17 °C 12. 8.26 kJ 13. –2.513 KJ/ mol
14. –299 KJ/ mol 15. +21.4 KJ/ mol